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Abstract: Understanding the conformational propensities of proteins is key to solving many prob-
lems in structural biology and biophysics. The co-variation of pairs of mutations contained in multi-

ple sequence alignments of protein families can be used to build a Potts Hamiltonian model of the

sequence patterns which accurately predicts structural contacts. This observation paves the way
to develop deeper connections between evolutionary fitness landscapes of entire protein families

and the corresponding free energy landscapes which determine the conformational propensities of

individual proteins. Using statistical energies determined from the Potts model and an alignment of
2896 PDB structures, we predict the propensity for particular kinase family proteins to assume a

“DFG-out” conformation implicated in the susceptibility of some kinases to type-II inhibitors, and

validate the predictions by comparison with the observed structural propensities of the corre-
sponding proteins and experimental binding affinity data. We decompose the statistical energies to

investigate which interactions contribute the most to the conformational preference for particular

sequences and the corresponding proteins. We find that interactions involving the activation loop

and the C-helix and HRD motif are primarily responsible for stabilizing the DFG-in state. This work
illustrates how structural free energy landscapes and fitness landscapes of proteins can be used in

an integrated way, and in the context of kinase family proteins, can potentially impact therapeutic

design strategies.
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Introduction

A protein’s sequence determines its free energy land-

scape, but it has proven a major challenge to predict

sequence-dependent structural propensities from

physical first principles. This has important practi-

cal consequences for therapeutic design, as confor-

mational preferences can determine drug specificity.

The type-II kinase inhibitor Gleevec is a prime
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example, as it binds strongly to ABL kinase yet not

to SRC kinase despite their having 47% sequence

identity.1,2 Gleevec’s specificity has been suggested

to be due in part to differing propensities of kinase

proteins for a conformation known as “DFG-out”

which the protein must take on in order to bind

type-II inhibitors.3–7 However this has been disputed

and the sequence-dependent origins of the difference

have proven difficult to confirm purely through

structural analysis.8–11

The evolutionary origins of proteins open another

angle of attack. Physical interactions between two

residues in a protein’s structure leads to their muta-

tional co-variation in a multiple sequence alignment

(MSA) of the protein family, which has motivated co-

evolutionary analysis techniques which predict con-

tacts in structure by identifying strongly correlated

position-pairs in the MSA (see Refs. 12, 13 for

review). “Inverse Ising” methods have proven particu-

larly suited for this purpose. These infer a statistical-

energetic “Potts” Hamiltonian model whose parame-

ters correspond to direct pairwise residue–residue

interaction strengths, by fitting MSA statistics using

techniques borrowed from statistical physics.14 The

power of inverse Ising inference has been demon-

strated through its use as the central component of

“direct coupling analysis” (DCA) for protein contact

prediction, which has been shown to predict the top

200 intra-protein contact pairs in many proteins with

�80% accuracy as confirmed by X-Ray Crystallogra-

phy and NMR studies, as well as inter-protein con-

tacts, alternative uncrystallized conformations,

ligand-mediated contacts, and it has been used for

ab-initio structure prediction.14–20

The Potts model can be used for more than pre-

dicting contacts. The model provides a probability

(or with a logarithm, a statistical energy) of any

given sequence, and predicts the change in a

sequence’s statistical energy for any set of muta-

tions. This statistical energy is related to the folding

free energy of the protein, and can be decomposed

into position- and residue-specific interaction terms

whose relationship with the pairwise terms in

structure-based free energy functions is just begin-

ning to be explored.21,22 This raises the possibility of

predicting sequence-specific properties including

conformational propensities.

Our goal is to infer conformational propensities

of individual kinases for the inactive DFG-out state,

in which a “DFG” motif is oriented away from the

kinase’s active site unlike in the active DFG-in con-

formation.6 We predict conformational preference by

“threading” calculations of the Potts energy for a

sequence as a function of conformation. Sequences

predicted by our analysis to have a high penalty for

the DFG-out state are never observed in that state

in crystal structures, while the remaining sequences

are observed in both DFG-in and DFG-out, and we

also find that sequences with high predicted penalty

bind poorly to type-II inhibitors in a high-

throughput binding assay. Furthermore, our analy-

sis suggests that the stability of the activation loop

in the DFG-in state plays an important role in con-

touring the energy landscape.

Inference Based on Correlated Sequence

Variation

Inverse Ising methods infer a statistical model P(S)

for the probability of observation of a sequence S

which captures the statistical features of a MSA of a

protein family up to second order, in the form of the

univariate and bivariate marginals (frequencies) f i
a

and f ij
ab of the residues at each position and each

position-pair i, j, for residue identities a, b. The maxi-

mum entropy (least biased) model which reproduces

the observed bivariate marginals takes the form PðSÞ
/ e2EðSÞ where E(S) is the statistical energy, given by

the Potts Hamiltonian EðSÞ5
PL

i hi
Si

1
PL

i<j Jij
SiSj

where

the model parameters hi
Si

(“fields”) represent the sta-

tistical energy of residue Si at position i, and Jij
SiSj

(“couplings”) represent the energy contribution of a

position-pair i, j. This model has been of interest in

protein structure prediction because strong couplings

Jij
ab are expected to correspond to direct physical inter-

actions in the protein 3d structure, in contrast to the

evolutionary correlations Cij
ab5f ij

ab2f i
af j

b which reflect

both direct and indirect interactions.14,18

Determining the values of Potts couplings given

bivariate marginals is a significant computational

challenge known as the inverse Ising problem, and a

variety of algorithms have been devised to solve

it.15,18,23–31 We have elaborated on a quasi-Newton

Monte Carlo method32,33 which is more computation-

ally intensive but yields a more accurate model, and

adapted it for protein family coevolutionary analysis

with a highly parallel implementation for GPUs. To

reduce the size of the problem and reduce the effect

of sampling error, we use a reduced amino acid

alphabet of 8 characters, chosen independently at

each position in a way which preserves the correla-

tion structure of the MSA (see methods).

Extracting Conformational Information from the

Potts Model and Crystal Structures
In typical applications of DCA an overall

“interaction” score is calculated for each position-

pair based on the coupling parameters and a thresh-

old determines predicted interactions, which have been

used to bias coarse grained molecular simulations.19,31

Contact prediction is illustrated in Figure 1A (upper tri-

angle), where the 64 coupling values for each position-

pair are summarized using a weighted “Frobenius

norm” (described in SI text) into a single number, shown
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as a heatmap. We also align 2896 kinase PDB structures

and count the frequency of residue–residue contacts

with a 6Å distance cutoff, shown as a complementary

heatmap (lower triangle, Fig. 1A). The correspondence

between the two maps is striking, demonstrating how

the Potts model contains information about specific

interactions within the protein.

In Figure 1B, lower triangle, we show the dif-

ference in contact frequency between the DFG-in

and DFG-out conformations based on a PDB crys-

tal structure classification (see methods). Contacts

shared by both conformations corresponding to the

overall fold cancel out, highlighting position-pairs

which differentiate the conformations. The Potts

model predicts strong coevolutionary interactions

at many of these positions (upper triangle) sug-

gesting it may be used to understand the confor-

mational transition.

In particular, this analysis highlights the impor-

tance of the activation loop in the conformational tran-

sition and identifies specific interactions it takes part

in. Figure 1B shows four relevant regions whose struc-

tures are illustrated in Figure 2. Interactions in region

1 between the activation loop and the P-loop are much

more common in the DFG-out state as has been previ-

ously reported,6,36,37 and the co-evolutionary analysis

predicts two strongly interacting pairs, (6,132) and

(7,132), where 132 is the DFG1 1 position (see num-

bering in Supporting Information table S2). In region

2, residues near the DFG motif interact with the

C-helix in the DFG-in state,36,38 as a result of a net-

work known as the R-spine which is broken in

DFG-out.6,37,39 The Potts model predicts a strong

interaction between the DFG 1 2 and DFG-1 residues

and the end of the C-helix. Region 3 corresponds to

interaction between the HRD motif and activation

loop. In DFG-in this loop forms a beta-strand near the

C-helix, while in DFG-out it folds to form a more dis-

tant two-turn helix.6,37,39 The R of the HRD motif is

in contact with this beta-strand in DFG-in, and the

Potts model predicts a number of interactions in this

region. Region 4 illustrates self-contacts in the activa-

tion loop in DFG-out due to its more folded and com-

pact conformation. All four regions illustrate major

global differences between DFG-in and DFG-out

reported in recent publications.

Predicting Kinase Sequence Conformational

Preference

The Potts energy can be decomposed into position-

and residue- specific components (the fields and cou-

plings), allowing analysis of the statistical energy of

regions within a sequence and the energetic cou-

pling between particular position pairs of that

sequence. By evaluating the Potts statistical energy

for a given sequence (not necessarily from the PDB

dataset) only including coupling terms corresponding

to positions observed to be in contact in a chosen

structure (defined by a 6Å atom-atom cutoff dis-

tance), we obtain a “threaded” energy of the

sequence in that conformation. A single sequence

may be evaluated over multiple conformations.

We use this threading calculation to model the

DFG-in to DFG-out transition. We order the 2869

kinase PDB structures by DFG-in and DFG-out con-

formation using PCA analysis (see methods). We

find the second principal component distinguishes

DFG-in (PCA2<40) and DFG-out (PCA2> 48)

Figure 1. Contact prediction using the Potts model. (A) Potts model predicted contacts computed using the weighted Frobe-

nius Norm (upper triangle), and a heatmap of crystal structure contact frequency at 6Å cutoff for each residue pair (lower trian-

gle). Important structural motifs such as the DFG and HRD triplets are annotated as hashed rows and columns. (B) Difference

in contact frequency in the DFG-in and DFG-out conformations, based on PDB structures (lower triangle), with corresponding

high-Frobenius-Norm pairs highlighted in matching colors (upper triangle). The contact frequency was computed separately for

the DFG-out and DFG-in structures and subtracted, giving a value from 21 to 1.
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according to the KLIFS database. By averaging a

sequence’s threaded energy over this conformational

parameter we obtain an effective “potential of mean

force” for that sequence [Fig. 3(A)], showing that cer-

tain sequences have a greater relative penalty for

taking the DFG-out conformation. Recent work sug-

gests it is possible to connect the Potts statistical

energy to physical units; we estimate that the scale

shown in Figure 3 to be 2–3 kcal/mol based on the

analysis in Ref. 21.

Figure 2. Structural differences between the DFG-in and DFG-out conformations of ABL kinase. Left: DFG-in (red, 2GQG [34])

and DFG-out (blue, 1IEP [35]) structures superimposed, showing the activation loop extended in the DFG-in state. Right: High-

lighted regions from figure 1B showing DFG-out (left) and DFG-in (right), with Potts predicted interacting residues shown as

sticks. Region 1: P-loop to activation loop interactions, showing Y7 and L132 (DFG 1 1). Region 2: C-helix to activation loop

interactions, showing V41, M42, F130,and S133. Region 3: HRD motif to activation loop interaction, showing F107, HRD (109–

111), A143, H144, and A145. Region 4: Interactions internal to the activation loop, showing L132, M136, T140, A143, and P147.

Figure 3. Prediction of conformational penalties. (A) Predicted conformational energy of PDB sequences as a function of con-

formation (averaged over 5-unit windows along the conformational axis, with mean value subtracted), colored according the

DFG-out penalty score (blue is low penalty). (B) Predicted DFG-out penalty versus conformation for each sequence and struc-

ture in the KLIFS database. The dashed horizontal line distinguishes sequences with a low DFG-out penalty from those with

high penalty, and the vertical line separates DFG-in (red) and DFG-out (blue) structures. The PDB structures of p38a MAP

kinase are shadowed in gray.
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We compute an overall DFG-out “penalty” score

for an arbitrary kinase sequence as the difference in

its average threaded energy between DFG-in and

DFG-out conformations. This is equivalent to com-

puting DEðsÞ5
P

i<jJ
i;j
si;sj
ðcout

i;j 2cin
i;jÞ where cin

i;j and cout
i;j

are the contact frequency of the pair i,j in the two

conformational states, reflecting a penalty for the

sequence to take on the DFG-out conformation.

Validating this predicted penalty score using

sequences from the PDB, we find that only sequen-

ces with low predicted DFG-out penalty are observed

in the DFG-out conformation in the KLIFS struc-

tural annotation [Fig. 3(B)]. Many sequences with

low DFG-out penalty are observed in both the DFG-

in and DFG-out conformations, for example p38a

MAP kinase [Fig. 3(B), gray], which is expected

since the active DFG-in state is necessary for kinase

function.

We also compare our predictions to experimental

results from a high-throughput inhibitor binding

assay of 299 human kinases sequences against 13

type-II inhibitors40 (see methods). The number of

inhibitors which bind to a kinase out of the 13 (its

“hit-rate”) is an experimental measure of the kinase’s

conformational penalty, which averages out the

effects of ligand-specific interactions. In Figure 4 we

show that sequences with low hit-rate are predomi-

nantly predicted to have high penalty (> 3) for the

DFG-out state necessary for type-II inhibitor binding.

The difference in mean hit-rate of 2.1 between the

high and low penalty sequences is highly significant

(P<10– 10), as measured by a permutation test. This

result supports the role of conformational preferences

in determining drug susceptibility suggested by com-

putational studies.2,3,41

The highest penalty kinase in this analysis,

Aurora A kinase, has no type-II inhibitors devel-

oped or reported in development and does not

have typical DFG-out structures in the PDB.6

Aurora A has a conformation called DFG-up which

has some similarities to DFG-out but is different

enough to be classified separately.42,43 There are

reported structures in which the DFG motif is

‘out’ (2C6E, 2J4Z,44 not in the KLIFS database)

but the activation loop is in the DFG-in-like

extended form, and they are not bound to type-II

inhibitors. The DFG motif in these unusual struc-

tures may be forced to an out-like state by ligand-

specific interactions. This further suggests the

activation loop itself contributes to the conforma-

tional preference.

Stabilization of the Activation Loop in DFG-in by

Particular Position Pairs

We examine the highest DFG-out penalty sequences

to determine which interactions contribute to their

high penalty. These positions are among those high-

lighted in the green boxes in Figure 2. We find that

these positions have significantly more favorable

couplings in DFG-in sequences than in DFG-out

sequences on average, and from structural analysis

these position pairs make frequent contacts within

6Å in the DFG-in state but not in DFG-out state.

This suggests stabilization of the activation loop in

the DFG-in sequences, which is consistent with a

recent computational study which showed that cer-

tain mutants stabilize the activation loop, biasing

the protein towards the DFG-in state.41

Conclusions

Free energy calculations have confirmed that single

point mutations which lead to resistance to type-II

inhibitors act by increasing the DFG-in to DFG-out

conformational free energy penalty.2,6,41 We have

shown that by examining the position- and

sequence- specific components of the Potts Hamilto-

nian it is possible to predict this sequence-

dependent penalty, deepening the link between the

evolutionary fitness and energy landscapes of pro-

teins, which we hope will have an impact on thera-

peutic design strategies.

Methods

Sequence datasets

We use HHblits45 to search the Uniprot database

with the Pfam kinase family seed (PF00069), obtain-

ing 127113 kinase sequences after filtering for valid

kinases. We weight these sequences to account for

phylogenetic and experimental biases at a 40%

Figure 4. Comparison of predicted DFG-out penalty to

measured type-II inhibitor hit-rate, determined from a binding

assay against 13 type-II inhibitors. The fraction of low versus

high penalty sequences is plotted for each hit-rate.
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identity threshold using the weighting strategy in

Ref. 18, leaving N 5 8149 effective sequences with

175 positions. To reduce the alphabet size we ran-

domly merge pairs of letters at each position which,

when treated as identical, would minimize the root

mean square difference between the Mutual Infor-

mation (MI) scores for all position pairs in the

reduced alphabet and full 21 letter alphabet, until

all positions have been reduced to 8 letters.

Potts model inference
For a set of trial couplings we estimate bivariate

marginals by Markov Chain Monte Carlo (MCMC)

evolution of 131072 sequences in parallel according

to the Potts Hamiltonian, each for 6.4 million steps

to reach equilibrium. The residuals relative to the

dataset marginals are then used in a quasi-Newton

update step of the Hamiltonian parameters (see

Supporting Information text for details).

PDB structure datasets

We obtain 2869 kinase crystal structures from the

PDB and align them to our sequence dataset. We

choose 351 atom–atom pairs which may be related

to the DFG-in to DFG-out transition whose distan-

ces we use as variables for PCA analysis (see Sup-

porting Information Fig. S2). After filtering based on

the PCA analysis, we find 432 structures annotated

as DFG-in and 93 as DFG-out in the KLIFS data-

base.46 Contacts are computed based on closest

atom-atom distances. When averaging, sequences

are weighted using a 40% identity threshold,

renormalizing to account for unresolved residues.

Kinase binding assay

We filter the 442 kinases tested in a binding assay40

keeping only the 299 unique non-mutant kinases

with a complete catalytic domain sequence in the

Entrez Genbank database,47 and predict their pen-

alty scores. An inhibitor “hit” was counted for any

assay with dissociation constant< 10 lM.
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